Africa, and (iii) implementing appropriate integrated control strategies to both conserve and maximise the agents’ impact. The most promising agents are the flowerbud-feeding weevil (*Anthonomus santacruzi*), leaf-sucking lace bug (*Gargaphia decoris*), leaf-mining flea beetle (*Acallepitrix* n. sp.) and stem-boring weevil (*Conotrachelus squalidus*), all of which display expanded host ranges in captivity. Appropriate interpretation of these results, with particular emphasis on quantified risk assessments, is crucial and has already facilitated the release of one agent. After a delay of some 18 months with the regulatory authorities, *G. decoris* was released in 1999, marking the first agent to be released on this weed anywhere in the world. Future referral of such problematic agents to an international review panel can accelerate decisions on their suitability and alleviate local concerns pertaining to South Africa’s revised legislation. Large-scale mechanical and herbicidal removal of *S. mauritianum* from invaded catchments and riverine areas, by South Africa’s ‘Working for Water’ Programme, necessitates a focus on integrated control strategies which conserve established agents (e.g. demarcating natural enemy refuges) and promote their implementation.

Predictability, Acceptability and Potential for Non-Target Damage by Agents Released for Biological Control of Weeds

A. J. WILLIS\(^1\), K. McMASTER, J. M. CULLEN\(^1\), and R. H. GROVES

\(^1\)CRC Weed Management Systems, CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia

\(^2\)CSIRO Entomology, GPO Box 1700, Canberra, ACT, 2601, Australia

Screening procedures for host-specificity of biological control agents rigorously attempt to limit the possibility that agents will affect non-target species, especially those having some economic benefit. There remains concern, however, about potential adverse environmental effects from agents released for biological control, particularly in those cases where agents attack non-target native species under quarantine conditions. Biological control of weeds in Australia appears to have a good record in this regard, although the post-release impact of agents on non-target natives has been rarely documented. The lack of documentation becomes of particular concern when one or several target weeds are related to rare or endangered native plant species, as can apply in Australia. We collated data from past programs for biological weed control to identify those cases in which agents were released despite prior knowledge from host-specificity testing that non-target native species could be affected. By ranking such cases in terms of the risk posed to the non-target native species, we highlighted the cases requiring follow-up field studies to determine more thoroughly the impacts, if any, of the agent(s). We suggest that glasshouse-based predictions of the likely impacts of agents on non-target species are accurate, thereby confirming the rigour of current screening procedures for host-specificity. More post-release empirical studies are required, however, to unequivocally demonstrate their accuracy. As far as we could ascertain using this methodology, Australia has an impeccable record of releases for weed biological control in terms of impacts on non-target native species and hence in terms of native plant biodiversity.