Pre-release studies were conducted on meadow hawkweed to determine how it compensates for stolon and scape damage. This information may be useful in the selection of biological control agents in the near future. Meadow hawkweed produced the same number of scapes and stolons regardless of treatments, which included artificially removing none, one half, or all of the scapes and stolons in a randomized block factorial experimental design. The ability of meadow hawkweed to compensate for damage suggests multiple agents imposing cumulative stress will likely be needed for biocontrol of this clonal weed. This study is one of three that were initiated in 1997 to evaluate how plant damage affects individual plant performance, the subsequent development of the clone, and how damage, in combination with fertility and interspecific competition, mediates the population dynamics of an established meadow hawkweed infestation.

Pre-Release Studies and the Selection of Biological Control Agents

LINDA M. WILSON and JOSEPH P. McCAFFREY

Department Plant, Soil and Entomological Sciences, University of Idaho,
Moscow, Idaho 83844-2339, USA

Pre-release studies were conducted on meadow hawkweed to determine how it compensates for stolon and scape damage. This information may be useful in the selection of biological control agents in the near future. Meadow hawkweed produced the same number of scapes and stolons regardless of treatments, which included artificially removing none, one half, or all of the scapes and stolons in a randomized block factorial experimental design. The ability of meadow hawkweed to compensate for damage suggests multiple agents imposing cumulative stress will likely be needed for biocontrol of this clonal weed. This study is one of three that were initiated in 1997 to evaluate how plant damage affects individual plant performance, the subsequent development of the clone, and how damage, in combination with fertility and interspecific competition, mediates the population dynamics of an established meadow hawkweed infestation.