Host range and natural history of *Gadirtha fusca*; The Second Biological Control Agent of Chinese tallow tree (*Triadica sebifera*)

- Greg Wheeler, USDA/ARS/IPRL Ft Lauderdale, FL
- K. Dyer, S. Wright, E. Wu USDA/ARS
- Jiangqing Ding, Yi Wang, Wei Huang, Jialiang Zhang - Chinese Academy of Sciences, Wuhan & Kaifeng, China
- Matt Purcell, CSIRO, Australia
Tallow distribution in China

- Distributed in China south of the Yellow river to Hong Kong
Tallow distribution in China

- Distributed in China south of the Yellow river to Hong Kong
- Cultivated sp.
Tallow distribution in China

- Distributed in China south of the Yellow river to Hong Kong
- Cultivated sp.
- Possibly 200 spp of herbivore pests that are potential biological control agents
Tallow's distribution US

- Introduced 1772 & 1900s
Tallow’s distribution US

- Introduced 1772 & 1900s
- The dominant woody sp in many forests & wetlands
Tallow’s distribution US

- Introduced 1772 & 1900s
- The dominant woody sp in many forests & wetlands
- Infestations impact endangered Whooping crane and Attwater’s prairie chicken
Tallow’s distribution US

• **Introduced 1772 & 1900s**
• The dominant woody sp in many forests & wetlands
• Infestations impact endangered Whooping crane and Attwater’s prairie chicken
• Expanding range, $200-$400 million to control over next 20 yrs
Tallow’s distribution US

- **Introduced 1772 & 1900s**
- The dominant woody species in many forests & wetlands
- Infestations impact endangered Whooping crane and Attwater’s prairie chicken
- Expanding range, $200-$400 million to control over next 20 yrs
- Biological control - safe, sustainable, cost-effective
Cost of tallow control

- COE Jacksonville district tallow control costs
- Annual cost for herbicide control 2013-2018
Euphorbiaceae phylogeny & test list

- 3 subfamilies in US: Euphorbioideae, Acalyphoideae, Crotonoideae
Euphorbiaceae phylogeny & test list

• 3 subfamilies in US: Euphorbioideae, Acalyphoideae, Crotonoideae

• 2 tribes of Euphorbioideae occur in range, Hippomaneae and Euphorbieae
Euphorbiaceae phylogeny & test list

- 3 subfamilies in US: Euphorbioideae, Acalyphoideae, Crotonoideae
- 2 tribes of Euphorbioideae occur in range, Hippomaneae and Euphorbieae
- Hippomaneae genera include *Ditrysinia*, *Gymnanthes*, *Hippomane*, *Sapium*, *Sebastiania*, *Stillingia*, *Triadica*
Euphorbiaceae phylogeny & test list

• 3 subfamilies in US: Euphorbioideae, Acalyphoideae, Crotonoideae
• 2 tribes of Euphorbioideae occur in range, Hippomaneae and Euphorbieae
• Hippomaneae genera include *Ditrysinia*, *Gymnanthes*, *Hippomane*, *Sapium*, *Sebastiania*, *Stillingia*, *Triadica*
• Tallow (*Triadica sebifera*) from small genus (3 spp from Asia)
Euphorbiaceae phylogeny & test list

• 3 subfamilies in US: Euphorbioideae, Acalyphoideae, Crotonoideae
• 2 tribes of Euphorbioideae occur in range, Hippomaneae and Euphorbieae
• Hippomaneae genera include *Ditrysinia*, *Gymnanthes*, *Hippomane*, *Sapium*, *Sebastiania*, *Stillingia*, *Triadica*
• Tallow (*Triadica sebifera*) from small genus (3 spp from Asia)
Euphorbiaceae phylogeny & test list

• 3 subfamilies in US: Euphorbioideae, Acalyphoideae, Crotonoideae
• 2 tribes of Euphorbioideae occur in range, Hippomaneae and Euphorbieae
• Hippomaneae genera include *Ditrysinia*, *Gymnanthes*, *Hippomane*, *Sapium*, *Sebastiania*, *Stillingia*, *Triadica*
• Tallow (*Triadica sebifera*) from small genus (3 spp from Asia)
Euphorbiaceae phylogeny & test list

- There are 60 genera in US (including Phyllanthaceae & Putranjivaceae)
Euphorbiaceae phylogeny & test list

- There are 60 genera in US (including Phyllanthaceae & Putranjivaceae)
- 5 federal and 17 state (FL & TX) listed spp (Argythamnia, Croton, Drypetes, Euphorbia, Heterosavia, Hippomane, Manihot, Phyllanthus, Tragia)
Tallow biological control agents

Heterapoderopsis bicallosicollis
Tallow biological control agents

Heterapoderopsis bicallosicollis

Bikasha collaris
Tallow biological control agents

Heterapoderopsis bicallosicollis

Bikasha collaris

Gadirtha fusca
Tallow biological control agents

- **Heterapoderopsis bicallosicollis**
- **Bikasha collaris**
- **Gadirtha fusca**
- **Sauris sp.**
Tallow biological control agents

- Heterapoderopsis bicallosicollis
- Bikasha collaris
- Gadirtha fusca
- Sauris sp.
Schizomyia chinensis on Tallow insects being developed

- 700 galls collected
- 200 larvae emerged
New Tallow biological control agents

- Da Miao, Hubei province
- *Dichomeris cymatodes*
- (Lepidoptera: Gelechiidae)
- India to China
- Reported from tallow
- DNA analysis
Defoliating caterpillar on Tallow

- *Gadirtha* a small genus, India, China, Japan, Australia
Defoliating caterpillar on Tallow

- *Gadirtha* a small genus, India, China, Japan, Australia
- Three spp, all described < 1890
Defoliating caterpillar on Tallow

- *Gadirtha* a small genus, India, China, Japan, Australia
- Three spp, all described < 1890
- *Gadirtha fusca* new sp. described 2014 with COI barcodes & morphology
Defoliating caterpillar on Tallow

- *Gadirtha* a small genus, India, China, Japan, Australia
- Three spp, all described < 1890
- *Gadirtha fusca* new sp. described 2014 with COI barcodes & morphology

- Narrow host range from Chinese
- Larval host range tested in China (46 spp lab; 32 spp field tested)
Origin of *Gadirtha fusca* collections

- Discovered in Anhui, Guangdong, Guangxi, Hunan, and Jiangxi provinces
- Molecular analysis to determine if same species
Diversity of *Gadirtha fusca*

- 2015 surveys found two color morphs
- Reared separately
- Conducted COI barcoding
Identification of *Gadirtha fusca*

Gadirtha fusca represented by a single clade indicating all one species - 0.3% genetic divergence
Identification of *Gadirtha fusca*

Gadirtha fusca represented by a single clade indicating all one species - 0.3% genetic divergence

Other *Gadirtha* spp had > 5.0% genetic divergence

Wheeler et al 2018a
Defoliating caterpillar on Tallow

4 days for egg hatch

Complete development 25-30 days

15.4 days as larva

10.8 days pupa to adult

5 instars
Host testing protocol

• No–choice starvation test. Assess physiological host range of neonates
Host testing protocol

• No–choice starvation test. Assess physiological host range of neonates

• Dual-choice test – simultaneously offers neonates a choice between non-target and weed
Host testing protocol

- No-choice starvation test. Assess physiological host range of neonates.
- Dual-choice test – simultaneously offers neonates a choice between non-target and weed.
- Multi-generation – determines if the neonates can sustain a population on non-target for three generations. No-choice.
No-choice test on Tallow

- No-choice test 78 spp *G. fusca* larvae
- All larvae died within 3 days on non-target spp except:

<table>
<thead>
<tr>
<th>Species</th>
<th>% survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triadica sebifera</td>
<td>81.6</td>
</tr>
<tr>
<td>tallow</td>
<td></td>
</tr>
</tbody>
</table>
No-choice test on Tallow

- No-choice test 78 spp *G. fusca* larvae
- All larvae died within 3 days on non-target spp except:

<table>
<thead>
<tr>
<th>Species</th>
<th>% survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triadica sebifera tallow</td>
<td>81.6</td>
</tr>
<tr>
<td>Gymnathes lucida Native - oysterwood</td>
<td>8.3</td>
</tr>
</tbody>
</table>
No-choice test on Tallow

- No-choice test 78 spp *G. fusca* larvae
- All larvae died within 3 days on non-target spp except:

<table>
<thead>
<tr>
<th>Species</th>
<th>% survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triadica sebifera</td>
<td>81.6</td>
</tr>
<tr>
<td>tallow</td>
<td></td>
</tr>
<tr>
<td>Gymnathes lucida</td>
<td>8.3</td>
</tr>
<tr>
<td>Native - oysterwood</td>
<td></td>
</tr>
<tr>
<td>Euphorbia hypericifolia</td>
<td>6.7</td>
</tr>
<tr>
<td>Native - graceful spurge</td>
<td></td>
</tr>
</tbody>
</table>
No-choice test on Tallow

- No-choice test 78 spp _G. fusca_ larvae
- All larvae died within 3 days on non-target spp except:

<table>
<thead>
<tr>
<th>Species</th>
<th>% survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triadica sebifera tallow</td>
<td>81.6</td>
</tr>
<tr>
<td>Gymnathes lucida Native - oysterwood</td>
<td>8.3</td>
</tr>
<tr>
<td>Euphorbia hypericifolia Native - graceful spurge</td>
<td>6.7</td>
</tr>
<tr>
<td>Euphorbia hyssopifolia Native - hyssopleaf sandmat</td>
<td>14.3</td>
</tr>
</tbody>
</table>
No-choice test on Tallow

- No-choice test 78 spp *G. fusca* larvae
- All larvae died within 3 days on non-target spp except:

<table>
<thead>
<tr>
<th>Species</th>
<th>% survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triadica sebifera tallow</td>
<td>81.6</td>
</tr>
<tr>
<td>Gymnathes lucida Native - oysterwood</td>
<td>8.3</td>
</tr>
<tr>
<td>Euphorbia hypericifolia Native - graceful spurge</td>
<td>6.7</td>
</tr>
<tr>
<td>Euphorbia hyssopifolia Native - hyssopleaf sandmat</td>
<td>14.3</td>
</tr>
<tr>
<td>Euphorbia milii (red) Ornamental - crown of thorns</td>
<td>9.1</td>
</tr>
</tbody>
</table>
Dual-Choice test results

- Dual-choice test of *Gadirtha fusca* larvae on non-target 4 spp.
- Larvae nibbled *G. lucida* only.
Dual-Choice test results

- Dual-choice test of *Gadirtha fusca* larvae on non-target 4 spp.
- Larvae nibbled *G. lucida* only.

![Bar chart showing larval feeding comparisons among different plant species](chart.png)

- **Euphorbia milii** yellow: $F_{1,8} = 2083.2; P < 0.0001$
- **Euphorbia milii** red: $F_{1,8} = 330.65; P < 0.0001$
- **Euphorbia hyssopifolia**: $F_{1,8} = 519.18; P < 0.0001$
- **Euphorbia hypericifolia**: $F_{1,8} = 88.08; P < 0.0001$
- **Gymnanthes lucida**: $F_{1,8} = 941.53; P < 0.0001$
Multiple generation test

- *Gadirtha fusca*
- Multiple generation testing larvae on non-target 4 spp:
- No survival after 2 generations on *G. lucida*

Wheeler et al. 2018b
Non-target *E. hypericifolia* (graceful sandmat)

Native to southern Florida, Caribbean
Overlap throughout invaded range
Non-target *E. hyssopifolia* (hyssopleaf sandmat)

Native to southern Florida, Caribbean
Overlap throughout invaded range
Non-target *G. lucida* (oysterwood)

Native to southern Florida, Caribbean
Little overlap throughout invaded range
Non-target *E. milii* (crown of thorns, christplant)

Ornamental in south Florida
Little overlap with tallow’s invaded range
Defoliating caterpillar on Tallow

- *Gadirtha fusca*
- Larvae safe & very damaging
- RCR = 0.9 mg/mg/d

Leaves fed to one late instar larva

Leaf damage of one larva after 2 days (135 cm²)
Defoliating caterpillar on Tallow

- *Gadirtha fusca*
- How much damage will larvae cause in an experimental setting?
- Infested saplings ~ 50 cm tall
- 0, 1, 5 larvae
- 2 generations
- about 15 d feeding/generation
Defoliating caterpillar on Tallow

- *Gadirtha fusca*
- Five larvae reduced total biomass by half
Defoliating caterpillar on Tallow

- *Gadirtha fusca*
- Five larvae reduced total biomass by half
- AG biomass 40% of control
Defoliating caterpillar on Tallow

- *Gadirtha fusca*
- Five larvae reduced total biomass by half
- AG biomass 40% of control
- Leaves biomass 5% of control
Defoliating caterpillar on Tallow

- *Gadirtha fusca*
- Five larvae reduced total biomass by half
- AG biomass 40% of control
- Numb Leaves 5% of control
Defoliating caterpillar on Tallow

- *Gadirtha fusca*
- Five larvae reduced total biomass by half
- AG biomass 40% of control
- Leaves biomass 5% of control
- BG biomass 60% of control
Summary Gadirtha fusca testing

All larvae died on 78 test spp, except

• Gymnathes lucida
• Euphorbia hypericifolia
• Euphorbia hyssopifolia
• Euphorbia milii (red)
Summary *Gadirtha fusca* testing

All larvae died on 78 test spp, except:

- *Gymnathes lucida*
- *Euphorbia hypericifolia*
- *Euphorbia hyssopifolia*
- *Euphorbia milii* (red)

Dual-choice results
Summary *Gadirtha fusca* testing

All larvae died on 78 test spp, except

- *Gymnathes lucida*
- *Euphorbia hypericifolia*
- *Euphorbia hyssopifolia*
- *Euphorbia milii* (red)
Summary *Gadirtha fusca* testing

- 5 larvae/sapling reduced leaf biomass to 5%

Dual-choice results

Multi-gen results
Acknowledgments