Integrated Vegetation Management Strategies for Nonnative Invasive Plants

Tim R. Murphy
The University of Georgia

Integrated Vegetation Management

- Integrates plant ecology and technology with preventive, cultural, biological, mechanical, and chemical methods to manage nonnative invasive plants in natural land areas.
- No one method is preferred.

Objectives of Invasive Plant Management

- Control/suppress nonnative plants
- Protect native plants
- Promote or establish self-sustaining ecosystems
- Maintain/improve water quality
- Prevent erosion
- Enhance biodiversity

The questions to ask first are:

- Length of commitment
 - Short or long
- Availability of funding
- Technical expertise
- What do we plant?
- Control usually can be achieved, but rehabilitation may be very difficult.

Well, what do we plant?

Things to consider:
- adaptability to the site
- seed/plant sources
- maintenance requirements
- pests?, common weeds?

MONEY

Environmental Considerations

- Maintain or improve water quality
- Prevent soil erosion
- Preserve, conserve and enhance biodiversity and integrity of desirable native plant sites including threatened or endangered species.
Control vs. Eradication

Control - Process of limiting a weed infestation to a desirable level.

Eradication - Elimination of all plants and plant parts.

IVM Strategy

- Identify plant, life cycle, habitat
- IVM methods
 1. Preventive
 2. Physical
 3. Cultural
 4. Biological
 5. Chemical

Preventive Methods

- Weed-free seed and plant material
- Screened and sterilized topsoil, soil amendments
- Keep all equipment clean

Physical Removal and Barriers

- Hoeing, pulling, etc.
 - Effective on annuals
 - Most expensive method
- Mulches and/or landscape fabrics

Mulches and Landscape Fabrics

- Fabric type affects the degree of weed suppression.
- Straw, wood chips, pine straw, and other organic materials prevent weed emergence.
- Practicality, expense.

Mowing

- Useful in grass-dominated plant communities
- Reduces seed production if done before flowering
- Repeat, repeat, repeat………..
The cultivation method can be extremely dangerous to workers, bystanders, wildlife, endangered plants. It is costly and indiscriminate.

Cultivation

Advantages: Controls most annual weeds quickly and easily

Disadvantages: Can be expensive, may increase erosion, prunes roots, practicality.

Cultural Methods

- Adapted, competitive native plants
- Spacing patterns
- Fertility and pH
- Burning (forget it)
- Water management
- Insect and disease control

Cultural

- Competitive, native plants
 - highly desired
 - plant succession force
 - naturally perpetuating wildflower meadow in Georgia are very rare
 - need research to identify species

Biological Methods

- Insects (thistle weevil)
- Pathogens - *Myrothecium verrucaria*
- Grazing animals (geese, goats)
- Fish (Sterile grass carp)
 - Highly desirable method
 - In need of much research

Chemical Methods

Herbicide - chemical that is used to control, suppress or kill nonnative, invasive plants (weeds).
Before Herbicide Use

- Identify weed.
- Use products labeled on site.
- Read and UNDERSTAND label.
- Follow directions carefully.
- Use only recommended amount.
- Maintain and calibrate equipment.

Herbicides

- Selective or non-selective products
- Application method can determine selectivity
- Can promote release of native plants through selective (physiological, or application) approaches
- Less costly than other VM methods
- Usually provides longer control

Herbicide Mode-of Action

Mode-of-Action - The entire sequence of events that happen from the time the herbicide is absorbed to the eventual plant response (usually death).

Or, The way a herbicide kills or inhibits the growth of susceptible plants.

Why understand herbicide MOA?

- Better understanding of how to use herbicides.
- Better understanding of how herbicides perform.
- Diagnosing herbicide injury.
- Professionalism.
- Public relations.

Herbicide Classification - Selectivity

- **Selective**
 - controls or suppresses one species of plant without seriously affecting the growth of another plant species.
- **Example**
 - Vantage will control Japanese stiltgrass without affecting the growth of non-grass plants.

Herbicide Classification - Selectivity

- **Nonselective**
 - Nonselective herbicides control plants regardless of species.
- **Examples**
 - Roundup Pro, Finale, Reward, Scythe
Herbicide Movement

Phloem Mobile
- Glyphosate
- 2,4-D
- Tordon
- Garlon
- Lontrel (Transline)

Xylem Mobile
- Velpar
- Atrazine
- Simazine
- Spike
- Hyvar

P+Z Mobile
- Oust
- Telar
- Escort
- Plateau
- Vanquish
- Arsenal

Non-Mobile
- Paraquat
- Finale
- Diquat

Modes of Action

1. Amino acid and lipid synthesis inhibitors.
2. Growth regulators.
3. Photosynthesis inhibitors.
6. Pigment inhibitors.
7. Fatty acid synthesis inhibitors.

Amino Acid Synthesis Inhibitors

- **Amino Acid Derivatives**
 - Glyphosate

- **Imidazolinones**
 - Arsenal
 - Plateau

- **Sulfonyleureas**
 - Escort
 - Oust
 - Telar

Roundup on azalea

Yellowing of new growth

Glyphosate

- Sometimes causes stunted compact growth.

Glyphosate

- Strapped leaves on a maple due to glyphosate.
- Mimics 2,4-D and other hormone-like herbicides
Sulfonylureas
- Escort, Oust, Telar, Outrider
- rapid shoot and root absorption
- translocates to meristematic areas
- inhibits leucine, isoleucine and valine synthesis
- growth is impaired and plants die over 1 to 3 wk period

Imidazolinones
- Arsenal, Plateau
 - rapid shoot and root absorption
 - translocates to meristematic areas
 - inhibits leucine, isoleucine and valine synthesis
 - growth is impaired and plants die over 1 to 3 wk period

Arsenal (imazapyr)
- Causes bunched, compact growth.

Growth Regulator Herbicides
- Phenoxy
 - 2,4-D
 - dichlorprop
- Benzoics
 - Banvel
 - Vanquish
- Picolinic acids
 - Tordon
 - Garlon
 - Transline, Lontrel

Phenoxy, Benzoic Acid, Picolinic Acid
- readily absorbed by foliage, less so by roots
- extensively translocated
- interfere with DNA, RNA and protein synthesis
- results in uncontrolled cell division and elongation
- vascular tissues are plugged, 1 to 3 wks

2,4-D - Japanese Maple
-
Herbicide Risks

- "Everything is Poison. There is nothing without poisonous properties. The dose differentiates a remedy from a poison."

Philippus Aureolus Theophrastus Bombastus von Hohenheim 1493-1541 Better known a Paracelsus

Risk Communication

- Risk / (Hazard, Exposure)

- Example:
 - Acetaminophen – Mouse LD50 = 338 mg/kg
 - 200 lb. mouse. Take 2 = no headache. Take 60 = death (50%)

- Reduce risk by reducing exposure!!

Facts

- 30 yrs added to lifespan in 20th century
- 8 yrs added since use of pesticides
- only 37% of land farmed in 1950 is cultivated today
 - Dennis Avery, Hudson Institute, Wall Street Journal, August 12, 1999
- deer, turkey, geese populations increasing in GA

Facts

- Cancer risks - smoking, sun bathing, fatty diets

- "After billions of dollars spent trying, not one pesticide-residue cancer victim has been found."
 - Dennis Avery, Hudson Institute, Wall Street Journal, August 12, 1999

Herbicide Concerns

- Last forever
- Contaminate water
- Affect human health
- Sterilize soil
- Use is not needed
- Kill all desirable organisms
- Degrade the environment

Herbicide Fate
Herbicide ½ Life

Amount of time it takes a herbicide to reach one-half (t1/2) of the originally applied concentration. Expressed in days, wks, months, yrs.

1.0 lb. Ai/acre 0.5 lb. Ai/acre

IVM program

1. Diagnose problem
2. Evaluate methods
3. Select methods
4. Initiate program
5. Evaluate effectiveness

Post Herbicides – Avg. t1/2

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Soil Persistence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>10 d</td>
</tr>
<tr>
<td>2,4-DP</td>
<td>10 d</td>
</tr>
<tr>
<td>MCPA</td>
<td>6 d</td>
</tr>
<tr>
<td>MCPP</td>
<td>21 d</td>
</tr>
<tr>
<td>Vanquish</td>
<td>21 - 84 d</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>10 - 46 d</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>40 d</td>
</tr>
</tbody>
</table>