Aquatic Invasive Plants and Their Look-Alikes

A specimen-based guide to identification in the Great Lakes Region
Aquatic Invasive Plants and Their Look-Alikes
A specimen-based guide to identification in the Great Lakes Region

Andrea Miller
Lindsey Worcester
Andrew Hipp
Kenneth Cameron
This identification guide was written to assist landowners, land managers, and citizen scientists in identifying aquatic invasive species. To provide accurate reports to facilitate Early Detection Rapid Response, we must first accurately identify invading species.

With this guide, you can be confident in knowing the differences between aquatic invasive species and their look-alikes in the Great Lakes Region.

This resource was created as part of Thematic Collections Network National Science Foundation Award #1405396 to The Morton Arboretum and 1410683 to The University of Wisconsin, Madison.

Whenever possible, this resource makes use of herbarium specimens and their associated data. Photos used include live and pressed plants. Distribution maps for each species were created from occurrence and collection records and may not reflect the entire geographic range of every species.

In this guide, invasive species appear in red and native species in black. ‘Aquatic’ refers to emergent and submersed plants, as well as those that grow at the water’s edge.

To see more digitized specimens of aquatic invaders and their look-alikes, please visit the Great Lakes Invasives Network portal at www.greatlakesinvasives.org.

This identification guide is covered under Creative Commons License CC BY-NC-SA.
Brazilian waterweed

Egeria densa Planch.

Example Population

Hydrilla

Hydrilla verticillata (L. f.) Royle

Common Waterweed

Elodea canadensis Mich.

General Form
Native waterweed (right) has whorls of three leaves and is less densely leafy than Brazilian waterweed or hydrilla.

<table>
<thead>
<tr>
<th>Brazilian Waterweed</th>
<th>Hydrilla</th>
<th>Common Waterweed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaves in whorls of 4 to 8</td>
<td>Leaves in whorls of 4 to 8</td>
<td>Leaves in whorls of 3</td>
</tr>
<tr>
<td>Leaf undersides with smooth midvein</td>
<td>Leaf undersides with sharply toothed midvein</td>
<td>Leaf undersides with smooth midvein</td>
</tr>
<tr>
<td>No turions</td>
<td>Can reproduce via turions</td>
<td>Can reproduce via turions</td>
</tr>
</tbody>
</table>

Hydrilla and common waterweed can reproduce from turions (top). Hydrilla can also reproduce via tubers (bottom). Neither Brazilian nor common waterweed produce tubers.

Watch for and remove fragments of hydrilla and Brazilian waterweed caught on boat propellers, accidentally pumped into livewells, and entwined in boating equipment. All three species described above can reproduce from stem fragments.

For this reason, mechanical removal is not recommended. To control patches of Brazilian waterweed, carefully remove them manually, making sure to collect all fragments, or if permitted, cover the plants with opaque fabric to block out any light.

Report sightings: www.eddmaps.org
Fanwort
Cabomba caroliniana Gray

Coontail
Ceratophyllum demersum L.

Distribution

Example Populations

General Form

Leaf variations
Fanwort
Cabomba caroliniana Gray

Easy ID

Fanwort is most easily recognizable by its emergent, elliptic leaves. Coontail does not have any floating or emergent leaves.

<table>
<thead>
<tr>
<th>Similar species</th>
<th>Easy ID characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>White water crowfoot</td>
<td>Leaf petioles absent or delicate</td>
</tr>
<tr>
<td>Ranunculus aquatilis</td>
<td>Leaves alternately arranged</td>
</tr>
<tr>
<td>Milfoil</td>
<td>Leaf petioles absent</td>
</tr>
<tr>
<td>Myriophyllum spp.</td>
<td>Leaves pinnately compound</td>
</tr>
<tr>
<td>Fanwort (this ID guide)</td>
<td>Leaves palmately compound</td>
</tr>
<tr>
<td>Cabomba caroliniana</td>
<td>Stalks relatively long</td>
</tr>
<tr>
<td>Coontail (this ID guide)</td>
<td>Leaves toothed along one side</td>
</tr>
<tr>
<td>Ceratophyllum demersum</td>
<td></td>
</tr>
<tr>
<td>Water marigold</td>
<td>Leaves heavily serrated/lobed edges</td>
</tr>
<tr>
<td>Megaladonta</td>
<td></td>
</tr>
<tr>
<td>Lake cress</td>
<td>Leaves many-branching</td>
</tr>
<tr>
<td>Neobeckia aquatica</td>
<td></td>
</tr>
</tbody>
</table>

Coontail
Ceratophyllum demersum L.

Note: Other submerged aquatics that have similar feathery leaves to fanwort and coontail are compared in the table below to help distinguish between species.

Prevention and Removal

Fanwort, as with all aquatic invasive plants, is best managed by prevention. Fanwort can reproduce from small fragments. Watch for and remove fragments caught in boating equipment and in ballast water.

Mechanical removal works in the short term, but it is unlikely that all fragments will be effectively removed. Fanwort becomes brittle at the end of the growing season, so mechanical removal is not recommended late into the summer.

Report any sightings:

www.eddmaps.org
Invasive
European Frogbit
Hydrocharis morsus-ranae L.

Native
Water-shield
Brasenia schreberi Gmel.

Distribution

Example Populations

General Form

Flowers / Inflorescence

This document is covered under Creative Commons License CC BY-NC-SA.
European Frogbit
Hydrocharis morsus-ranae L.

- Easy ID
 - European frogbit has clefted, heart- or kidney-shaped leaves.
 - Water-shield has entire, oval or football-shaped leaves.

Water-shield
Brasenia schreberi Gmel.

<table>
<thead>
<tr>
<th>European Frogbit</th>
<th>Water-shield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproduces by stolons</td>
<td>Reproduces by rhizomes</td>
</tr>
<tr>
<td>Flowers white</td>
<td>Flowers purple to pink</td>
</tr>
<tr>
<td>Leaves to 6 cm diameter</td>
<td>Leaves to 12 cm diameter</td>
</tr>
</tbody>
</table>

Prevention and Removal

Few control strategies have proven successful against European frogbit. Small groups of plants can be carefully pulled by hand if all fragments are gathered. Shading out small infestations may be possible at the risk of shading out native species.

One European frogbit plant can produce 100 turions each year! Prevention and early detection are crucial to its management. Watch for fragments caught in boating equipment and ballast water.

Report any sightings:
www.eddmaps.org

This document is covered under Creative Commons License CC BY-NC-SA.
Invasive
Purple Loosestrife
Lythrum salicaria L.

Native
Blue Vervain
Verbena hastata L.

Native
Fireweed
Chamerion angustifolium (L.) Holub

Example Populations

Flowers and Inflorescence

This document is covered under Creative Commons License CC BY-NC-SA.
Purple Loosestrife
Lythrum salicaria L.

Blue Vervain
Verbena hastata L.

Fireweed
Chamerion angustifolium (L.) Holub

Leaf

<table>
<thead>
<tr>
<th>Purple Loosestrife</th>
<th>Blue Vervain</th>
<th>Fireweed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowers with 5 - 7 distinct petals</td>
<td>Flowers with 5 fused petals</td>
<td>Flowers with 4 distinct petals and 4 smaller sepals</td>
</tr>
<tr>
<td>Flowers magenta</td>
<td>Flowers purplish blue</td>
<td>Flowers magenta</td>
</tr>
<tr>
<td>Plants to 3m tall</td>
<td>Plants to 1.5m tall</td>
<td>Plants to 1.5m tall</td>
</tr>
</tbody>
</table>

Easy ID

Purple loosestrife grows to be much taller than blue vervain or fireweed. Look for 5-7 distinct petals, not fused, to confirm identification.

Prevention and Removal

Purple loosestrife can reproduce via underground buds so cutting stems is not an effective removal strategy. Small populations of purple loosestrife can be halted by hand pulling before the plants set seed. Be sure to remove the entire root system and underground stems.

Report any sightings:

www.eddmaps.org

This document is covered under Creative Commons License CC BY-NC-SA.
Example Populations/Habitat

- **Eurasian Watermilfoil**
 Myriophyllum spicatum L.

- **Parrotfeather**
 Myriophyllum aquaticum (Vell.) Verdc.

- **Northern Watermilfoil**
 Myriophyllum sibiricum Kom.

General Form

This document is covered under Creative Commons License CC BY-NC-SA.
Leaves

Eurasian Watermilfoil
Myriophyllum spicatum L.

Parrotfeather
Myriophyllum aquaticum (Vell.) Verdc.

Northern Watermilfoil
Myriophyllum sibiricum Kom.

<table>
<thead>
<tr>
<th>Eurasian Watermilfoil</th>
<th>Parrotfeather</th>
<th>Northern Watermilfoil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branches numerous near surface of water</td>
<td>Branches numerous near surface of water</td>
<td>Branches few</td>
</tr>
<tr>
<td>Leaflets in 12 or more pairs per leaf</td>
<td>Leaflets in 10-15 pairs per leaf</td>
<td>Leaflets in 5-12 pairs per leaf</td>
</tr>
</tbody>
</table>

Eurasian Watermilfoil
Myriophyllum spicatum L.

Parrotfeather
Myriophyllum aquaticum (Vell.) Verdc.

Northern Watermilfoil
Myriophyllum sibiricum Kom.

This document is covered under Creative Commons License CC BY-NC-SA.
Eurasian watermilfoil leaves lose their shape when held out of the water.

While Eurasian and northern milfoil have emergent flowers, only parrotfeather has emergent stems and leaves.

Myriophyllum spicatum (top left) has four leaves/whorl, **M. sibiricum** (top right) has four leaves/whorl, and **M. aquaticum** (bottom center) has five leaves/whorl.

Watch for and remove fragments of milfoil or parrotfeather caught on boat propellers, accidentally pumped into livewells, and entwined in boating equipment.

Eurasian watermilfoil and parrotfeather stems easily fragment. These tiny bits can reproduce and propagate so mechanical pulling of large populations is not recommended. If the population is small, carefully pull each plant out by hand.

Report any sightings: www.eddmaps.org
Introduced

Phragmites

Phragmites australis (Cav.) Trin ex Steud.

Native

Phragmites

Phragmites australis subsp. americanus Saltonstall

Because invasive and native *Phragmites* are so similar in appearance, the creation of an accurate map from EDDMapS and SEINet occurrence records was not possible.

Example Populations

Stem
Introduced Phragmites

Phragmites australis (Cav.) Trin ex Steud.

- Stem matte (dull), tan or green
- Leaves blue-green
- Plant to 6m tall
- Forming dense stands, to 200 stems per m²

Native Phragmites

Phragmites australis subsp. *americanus* Saltonstall

- Stem lustrous (glossy), red or green
- Leaves light, bright green
- Plant to 2m tall
- Not forming dense stands, individuals scattered

Easy ID

Invasive *Phragmites* have green or tan colored stems. *Phragmites* with a red, shiny stem are native.

Introduction

- Introduced *Phragmites* have green or tan colored stems.
- Native *Phragmites* have a red, shiny stem.

Invasive Characteristics

- Reproduces clonally via underground stems, or rhizomes. Rhizomes store energy from season to season. Mowing late in the season over multiple years has been found effective at controlling *Phragmites*. Mowing early in the growing season will result in more stems.

Prevention and Removal

- **Report any sightings:**
 - www.eddmaps.org

This document is covered under Creative Commons License CC BY-NC-SA.
Curly Pondweed
Potamogeton crispus L.

Flat-stemmed Pondweed
Potamogeton zosteriformis Fern.

Invasive

Native

Distribution

Example Populations

General Form

Leaves

Source: Andrea Miller, The Morton Arboretum

Source: Leslie J. Mehrhoff, University of Connecticut, Bugwood.org

Source: Britton, N.L., and A. Brown, USDA PLANTS Database
The leaves of curly pondweed are wavy, like narrow lasagna noodles. The leaves of flat-stemmed pondweed are linear.

<table>
<thead>
<tr>
<th>Curly Pondweed</th>
<th>Flat-stemmed Pondweed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veins 3-5 per leaf</td>
<td>Veins to 35 per leaf</td>
</tr>
<tr>
<td>Leaves to 10 cm long x 1 cm wide</td>
<td>Leaves to 20 cm long x 5 mm wide</td>
</tr>
<tr>
<td>Leaf apex rounded</td>
<td>Leaf apex pointed</td>
</tr>
<tr>
<td>Leaf margins serrated</td>
<td>Leaf margins smooth</td>
</tr>
</tbody>
</table>

To manage curly pondweed, cut stems at their very bottom along the sediment level. Curly pondweed can reproduce by fragments so it is important to capture any freed leaf or stem pieces.

Report any sightings:

www.eddmaps.org

Both curly and flat-stemmed pondweed overwinter by creating turions, or winter buds. This burshaped winter bud belongs to curly pondweed.
Reed Canary Grass
Phalaris arundinacea L.

Invasive

Orchard Grass
Dactylis glomerata L.

Native

Bluejoint
Calamagrostis canadensis (Michx.) P. Beauv.

Example Populations

- Andrea Miller, The Morton Arboretum
- Ohio State Weed Lab, The Ohio State University, Bugwood.org
- Dave Powell, USDA Forest Service (retired), Bugwood.org

Flowers/Inflorescence

- Herbarium of The Morton Arboretum (MOR)
- Herbarium of The Morton Arboretum (MOR)
- Herbarium of The Morton Arboretum (MOR)
Easy ID

Reed canary grass is rough to the touch while bluejoint is smoother.

Orchard grass grows in drier, upland habitats while reed canary grass and bluejoint often grow in wetlands where the soil is frequently saturated.

<table>
<thead>
<tr>
<th>Reed Canary Grass</th>
<th>Orchard Grass</th>
<th>Bluejoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide and robust leaves (10-20 mm wide)</td>
<td>Narrow leaves (~4-10 mm wide)</td>
<td>Narrow and delicate leaves (4-8 mm wide)</td>
</tr>
<tr>
<td>Auricles present on leaves</td>
<td>Auricles present on leaves</td>
<td>Auricles not present on leaves</td>
</tr>
<tr>
<td>2 tufts of hairs under the florets</td>
<td>No hairs under the florets</td>
<td>Ring of hairs under the florets</td>
</tr>
<tr>
<td>Inflorescence cylindrical</td>
<td>Inflorescence branches straight, diverging from a central axis, with large clusters of spikelets attached</td>
<td>Inflorescence feathery</td>
</tr>
</tbody>
</table>

Prevention and Removal

To control reed canary grass, approaches may vary among sites. For more information, contact your local DNR office or an agricultural extension specialist for best practices in your area.

Small patches of orchard grass can be dug up and removed. Dig to a depth of at least 3 inches and refill the hole immediately. To prevent weeds from establishing, either re-seed or plant sod in the open area.

Report any sightings:

www.eddmaps.org
According to current records from EDDMapS and SEINet, water soldier is present in Ontario, Canada but has not yet entered the United States.
Easy ID

Water soldier has **sharp teeth** along the edges of its leaves. Native bur-reeds do not have serrated edges.

<table>
<thead>
<tr>
<th>Water Soldier</th>
<th>American bur-reed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf margins serrate</td>
<td>Leaf margins smooth</td>
</tr>
<tr>
<td>Leaves fragile and rigid</td>
<td>Leaves flexible</td>
</tr>
<tr>
<td>Flowers showy and uncommon</td>
<td>Flowers densely packed in spherical heads</td>
</tr>
</tbody>
</table>

Prevention and Removal

If you spot water soldier while boating, slow down to reduce wake. Disruption can dislodge plants and send them floating to new areas.

To remove water soldier, rake up the floating plants, bag, and take to a landfill. Watch for and remove any floating pieces. Water soldier is fragile and can reproduce by fragments. Wear arm and leg protection to prevent skin injury.

Report any sightings:
www.eddmaps.org

Water soldier looks like the common houseplant, aloe vera.
Invasive

Hybrid Cattail

Typha ×glauc Godr.

Invasive

Narrowleaf Cattail

Typha angustifolia L.

Native

Broadleaf Cattail

Typha latifolia L.

Example Populations

Leaf Width

This document is covered under Creative Commons License CC BY-NC-SA.
The hybrid cattail, *T. ×glauca*, is produced by frequent crosses between the native broadleaf and the non-indigenous narrowleaf.
There is no easy, reliable field identification for these taxa. In pure populations, narrowleaf and hybrid cattails have a gap between the male and female flowers, broadleaf cattails do not.

Due to hybridization, backcrossing to one of the parental species, and introgression, all Typha in the Great Lakes region may be invasive. Recent genetic work on Typha has suggested that morphological measurements alone may not be enough to confidently ID these species.

<table>
<thead>
<tr>
<th>Hybrid Cattail</th>
<th>Narrowleaf Cattail</th>
<th>Broadleaf Cattail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem 2-3 m tall</td>
<td>Stem 1-3 m tall</td>
<td>Stem 1-3 m tall</td>
</tr>
<tr>
<td>Leaf 6-15 mm wide</td>
<td>Leaf 4-10 mm wide</td>
<td>Leaf 14-23 mm wide</td>
</tr>
<tr>
<td>Spike longer than 15 cm</td>
<td>Spike shorter than 15 cm</td>
<td>Spike shorter than 15 cm</td>
</tr>
<tr>
<td>Gap between male/female flowers 0.5-4 cm</td>
<td>Gap between male/female flowers 2-8 cm</td>
<td>No gap between male/female flowers</td>
</tr>
</tbody>
</table>

The most effective way to control cattail populations is to repeatedly cut shoots below water level. This can be done in late summer or early autumn. Cutting stems too early will result in increased growth.

Report any sightings: www.eddmaps.org
Invasive

Yellow Floating Heart

Nymphoides peltata (Gmel.) Kuntze

Native

Yellow Pond Lily

Nuphar lutea (L.) Sm.

General Form

Flowers / Inflorescence

Distribution

<table>
<thead>
<tr>
<th>Counties present in EDDMapS only</th>
<th>Counties present in SEINet only</th>
<th>Counties present in both EDDMapS and SEINet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Georeferenced specimens, SEINet</td>
<td>Georeferenced observations, EDDMapS</td>
</tr>
</tbody>
</table>

Example populations/Habit

Leslie J. Mehrhoff, University of Connecticut, Bugwood.org

Angela DePalma-Dow, MDNR-Wildlife Division

Louisiana State University, Shirley C. Tucker Herbarium, Midwestherbaria.org. Cropped

This document is covered under Creative Commons License CC BY-NC-SA.
Small patches of yellow floating heart can be controlled by hand-pulling if all fragments are gathered. The plant grows from underwater stems called stolons. If a stolon breaks off with a node intact, the fragment can establish a new population.

Watch for and remove fragments of yellow floating heart caught in boating equipment and in ballast water.

Report any sightings:
www.eddmaps.org

Easy ID

Yellow Floating Heart
Nymphoides peltata (Gmel.) Kuntze

- Leaves to 13 cm diameter
- Leaf margins wavy
- Flowers unscented
- Flower petal margins fringed

Yellow Pond Lily
Nuphar lutea (L.) Sm.

- Leaves to 40 cm diameter
- Leaf margins smooth
- Flowers scented
- Flower sepal margins smooth

This document is covered under Creative Commons License CC BY-NC-SA.
Glossary

Auricles - Pair of ear-like or horn-like structures that extend from the leaf sheath and generally wrap around the culm at the point where the sheath ends meet.

Culm - Stem of a grass, sedge, or rush.

Elliptic - Having an oval shape.

Emergent - Growing up from the water’s surface, thus growing in part below and in part above the surface.

Habit - Pattern of growth form.

Inflorescence - Group of flowers.

Leaflet - Segment of a compound leaf.

Ligule - A flap of tissue, typically thin and membranous, attaching at the point of connection between the leaf blade and the stem in grasses, sedges, Potamogeton, and occasional other families.

Node - The point at which a leaf starts growing from the stem.

Petal - Modified showy leaf around reproductive structures.

Petiole - The stalklike structure that connects a leaf to the stem; plants in which this structure is not distinguishable from the leaf blade are said to be sessile.

Rhizome - Underground stem, facilitates cloning.

Sepal - Modified leaf at base of flower, often green.

Spike - Unbranched inflorescence.

Stolon - Stem running along surface of substrate, facilitates cloning.

Submerged - Growing completely underwater.

Tuber - Underground stem, stores starches.

Turion - Winter bud, dense leaf tissue, facilitates cloning.

Whorl - Leaf arrangement of three or more leaves coming from a node, surrounding the stem in circular pattern.
Collections database with plant, fish, and mollusk occurrence records and specimen images.

www.greatlakesinvasives.org

Online and smartphone application to report invasives sightings and create distribution maps.

www.eddmaps.org

Collections database with plant and animal occurrence records and specimen images.

www.idigbio.org

Node of the USGS NAS database. Includes nonindigenous, range expansion, and watchlist species.

www.glerl.noaa.gov/res/Programs/glansis/glansis

Collections database and hub for plant species information. Focused on the Great Lakes Region.

www.midwestherbaria.org
References

Brandeis University, Field Biology Electronic Field Guides - www.bio.brandeis.edu/fieldbio

California Invasive Plant Council - www.cal-ipc.org

Flora of North America - www.efloras.org

GLANSIS, Great Lakes Aquatic Nonindigenous Species Information System - http://www.glerl.noaa.gov/glansis/

Michigan State University, Midwest Invasive Species Information Network - http://www.misin.msu.edu/

Ontario's Invading Species Awareness Program - www.invadingspecies.com

Plants For A Future - www.pfaf.org

New Jersey Agricultural Experiment Station, Rutgers, The State University of New Jersey. Copyright © 2016 - njaes.rutgers.edu

Skawinski, Paul M., 2011. Aquatic Plants of the Upper Midwest: A photographic field guide to our underwater forests. Self-published, Wausau, WI.

USDA, Plants Database - http://plants.usda.gov

Wisconsin Department of Natural Resources - http://dnr.wi.gov/

Photos in this guide were made available for educational use under Creative Commons Attribution 3.0 (https://creativecommons.org/licenses/by/3.0/) or under Creative Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/)

Special thanks to the reviewers of this guide:
Paul Skawinski, University of Wisconsin - Stevens Point
Joshua Sulman, Stantec
Christy Rollinson, The Morton Arboretum
Kurt Dreisilker, The Morton Arboretum
Dan Larkin, University of Minnesota

This document is covered under Creative Commons License CC BY-NC-SA.