

ZM-X: A New Biochemical Dreissenid Control Technology

Safe. Scalable. Scientifically Sound.

Danny Cook, CEO, ZM Controllers

John Fournier, Regulatory Consultant, Acadia Regulatory

10/18/2016

Presentation Outline

1. Background: What is ZM-X?
2. Answers to the Top Five ZM-X Questions

What is ZM-X?

ZM-X: Safe. Scalable. Scientifically Sound.

- Patent Pending (ZM Controllers)
- Highly efficacious: 100% mortality in < 3 days
- Compatible w/ materials and safe for workers
- Approved in US
- Environmentally sound
- Scalable & readily available
- Cost-effective

Invasive Mussels Have Catastrophic Impacts

- Infest *any* system exposed and:
 - clog water inlets, pumps and pipes
 - obstruct flow
 - cause erosion
 - strain pumps and other equipment
 - harm native species
 - are hazardous to swimmers
 - reduce aesthetics

ZM-X Buffers pH with Organic Acids

Invasive mussels have a narrow range of pH tolerance¹ and minimum required level of calcium²

By manipulating pH with specific **organic acids** we can control their survival **without** impacting the environment or infrastructure.

ZM-X: CITRIC ACID

We have chosen to market our citric acid formulation first due to:

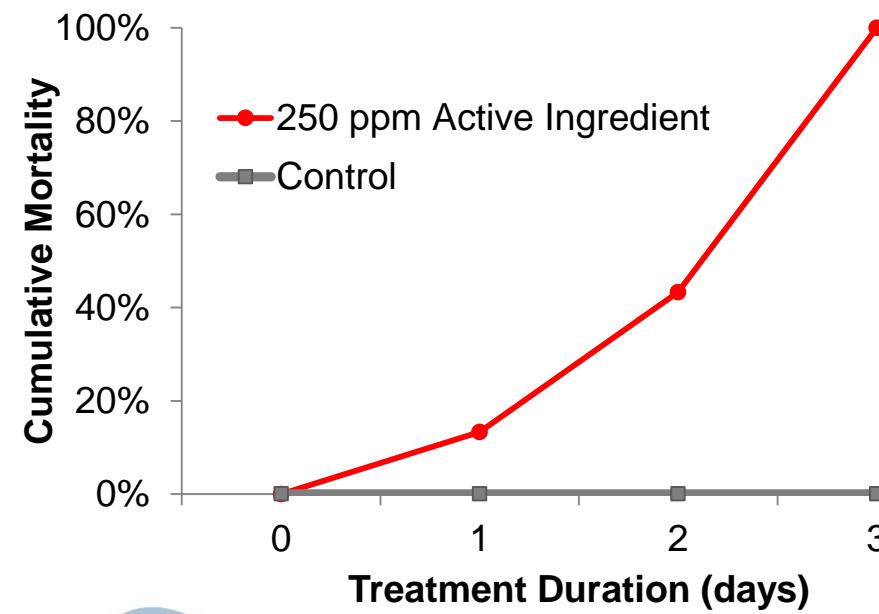
Efficacy, availability, and EPA approval status

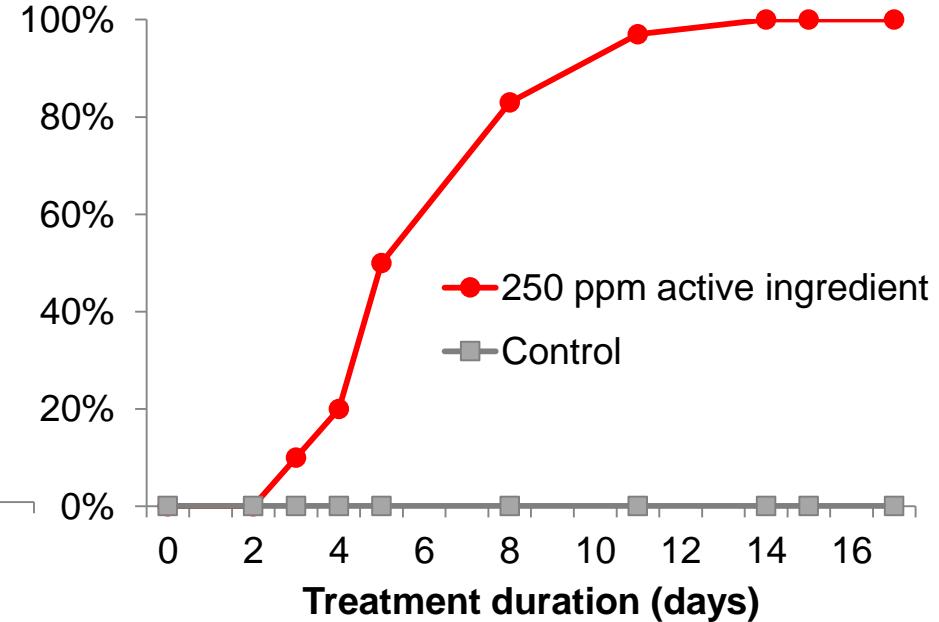
ZM-X Has a Broad Range of Applications

We expect to serve:

- Irrigation districts
 - *ZM-X has added benefits for agriculture!*
- Watercraft decontamination agencies
 - *907,021 boats inspected in 2015³*
- Power industry
 - hydro, nuclear, coal
- Drinking water industry
 - Trihalomethane limitations

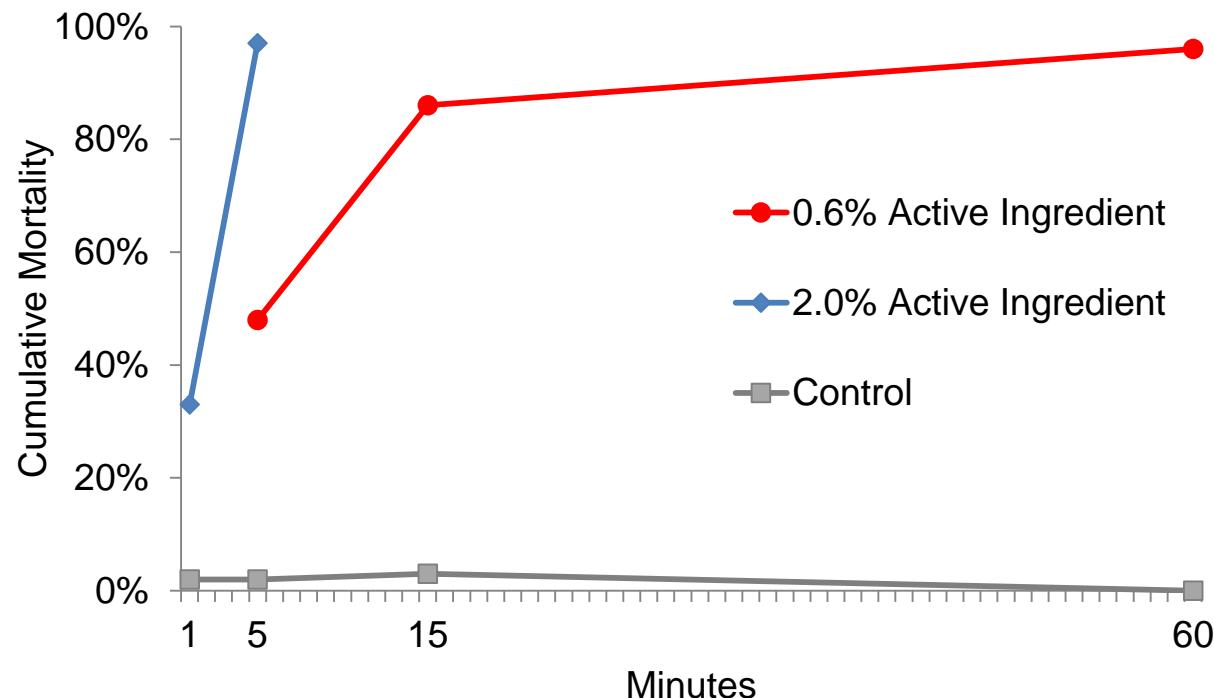
Top Five ZM-X Questions


1. Is ZM-X Efficacious?


ZM-X Yields 100% Adult Mortality in 3 days

Independent lab tests ([RNT Consulting](#)) indicate faster mortality than current chemical technologies

100% mortality in 3 days
in warm water (~20°C)



100% mortality in 14 days
in cold water (~10°C)

ZM-X Kills Veligers in ~5 minutes

Independent lab tests ([KASF Consulting](#)) indicate 97% veliger (mussel larvae) mortality within 5 min of exposure

2. Is ZM-X Compatible with Construction Materials and Safe for Workers?

Organic Acids are Compatible with Most Construction Materials and Safe for Workers

- Soft drinks, orange juice, lemon juice, etc. contain significantly more citric acid than treatment concentrations⁴
- Citric acid is compatible with most construction materials⁵

3. How Much Does ZM-X Cost?

ZM-X is Cost-Effective

- Citric acid is a commodity produced worldwide
- Cost falls in the middle of products on the market now.
- If we value environmental impacts, cost is relatively low.

	ZM-X	KCl/Potash	Copper	Chlorine Bleach	Quaternary Ammonium
Persistent toxins or byproducts	None; Discharge is chelated calcium	Persistent in aquatic systems	Remains in water column for weeks to months; accumulates in soil	Hazardous; Produces carcinogenic byproducts	Persists in benthos for 10,000+ years
Costs	Moderate	Low to Moderate	Low to Moderate	Low, but “detox” costs can be more than application	Expensive

Cost ÷ Benefits = Value

Features/Advantages/Benefits (FAB's):

- De-scales pipe interiors and flow surfaces^{6,7,8}
- Inhibits other biofouling (especially in microirrigation systems)⁹
- If used in irrigation systems, ZM-X:
 - chelates insoluble minerals such as P, Ca, and others that favorably alter soil chemistry and promote microbial activity
 - increases microbial activity in the soil leading to increased water holding capacity, which increases irrigation efficiency (saves water!)^{10,11,12,13,14,15,16}
 - Makes nutrients available to plant roots improving crop health and growth which reduces fertilizer input costs¹⁷
 - Promotes a vigorous and healthy soil microbiome to defend against opportunistic soil pathogens^{18,19,20,21}

4. How Does ZM-X Compare to Other Products?

ZM-X Works Faster, is More Effective, and is Environmentally Compatible

	ZM-X	KCl/Potash	Copper	Chlorine Bleach	Quaternary Ammonium
Treatment Duration	1-3 days	10+ days	5+ days	10-90 days	5+ days
Flexibility, Scalability, Consistency	Compatible w/ materials, readily available, consistent	Sodium content of deposits vary, affecting results; mussels may revive	Consistent, regulatory restrictions	Dependent on organic loading, highly corrosive, requires quenching w/ sulfites	Requires quenching w/ bentonite clay
Source	100% bio-based, renewable	Mined fossil resource	Heavy metal	Chemical biocide	Chemical biocide
Persistent toxins or byproducts	None; Discharge is chelated calcium	Persistent in aquatic systems	Remains in water column for weeks to months; accumulates in soil	Hazardous; Produces carcinogenic byproducts	Persists in benthos for 10,000+ years
Selectivity	Somewhat selective	Somewhat selective	Nonselective biocide	Nonselective biocide	Nonselective biocide
Costs	Moderate	Low to Moderate	Low to Moderate	Low, but “detox” costs can be more than application	Expensive

5. Is ZM-X Approved by US EPA?

ZM-X is Approved by US EPA (FIFRA 25b)

Citric acid formulation is approved by US EPA (FIFRA 25b)²² and approved for use in CA, MN, and TX

We are seeking approval in more states and for two more formulations

- **No toxicity build-up**
- **Non-toxic** to mammals, birds, and most aquatic organisms
- **Non-persistent and readily biodegrades**

Questions?
Come See us at Table # 12!

Contact us at Info@ZMcontrollers.com
Or visit our webpage at zmcontrollers.com

Citations

1. Claudi R, Prescott T, Mastitsky S, Evans D, Taraborelli AC. 2012. Evaluating Low pH for Control of Zebra Mussels. Report prepared for CA Department of Water Resources.
2. Claudi R, Prescott K. 2011. Examination of Calcium and pH as Predictors of Dreissenid Mussel Survival in the California State Water Project. Report prepared for CA Department of Water Resources.
3. Phillips S. 2016. Dreissenid Mussel Prevention Across the Pacific Northwest. 19th International Conference on Aquatic Invasive Species (presentation).
4. Penniston K, Nakada S, Holmes R, Assimos D. 2009. Quantitative Assessment of Citric Acid in Lemon Juice, Lime Juice, and Commercially-Available Fruit Juice Products. *J Endoural.* 22(3): 567-570.
5. Cole-Parmer Chemical Compatibility Database. United States. [Web](#). 12 Oct 2016.
6. Meng X, Braksmayer D. 3-Hydroxyprponionic Acid as a Cleaning Agent for Scale Removal. White Paper. Industrial Bioproducts, Cargill, Inc. Waysata, MN.
7. Tarchitzky J, Rimon A, Kenig E, et al. 2013. Biological and chemical fouling in drip irrigation systems utilizing treated wastewater. *Irrigation Science*, 31: 1277.
8. Eberhard, JF, Rosene RB. 1961. Removal of Scale Deposits. Dow Chemical Company, assignee. Patent US 3003899 A.
9. Gilbert RG, Nakayama FS, Bucks DA, French OF, Adamson OF. 1981. Trickle irrigation emitter clogging and flow problems. *Agriculture Water Management* 3: 159-178.
10. Oberson A, Besson JM, Maire N, Sticher H. 1996. Microbiological transformations in soil organic phosphorus transformations in conventional and biological cropping systems. *Biology and Fertility of Soils*, 21: 138-148.
11. Bailey VL, Bilskis VL, Fansler SJ, McCue LA, Smith JL, Konopka A. 2012. Measurements of microbial community activities in individual soil macroaggregates. *Soil Biology and Biochemistry*, 48: 192-195.
12. Glanville H, Rousk J, Golyshin P, Jones DL. 2012. Mineralization of low molecular weight carbon substrates in soil solution under laboratory and field conditions. *Soil Biol. Biochem.*, 48: 88-95.
13. DeNobili M, Contin M, Mondini C, Brookes PC. 2001. Soil microbial biomass is triggered into activity by trace amounts of substrate. *Soil Biology and Biochemistry*, 33: 1163-1170.
14. Palomo L, Claassen N, Jones DL. 2006. Differential mobilization of P in the maize rhizosphere by citric acid and potassium citrate. *Soil Biology & Biochemistry* 38: 683-692.
15. United States Department of Agriculture Natural Resources Conservation Service (NRCS) Soil Quality Information Sheet. May 2001, Soil-Biota.
16. Van Veen J, Kuikman PJ. 1990. Soil structural aspects of decomposition of organic matter by micro-organisms. *Biogeochemistry* 11, 213-233.

Citations

17. Young D. 1991. Plant Growth Regulations. Union Oil Company of California, assignee. Patent US 5059241.
18. Mall S. 1973. Studies on microbial antagonism in rhizosphere soils of potato varieties differentially susceptible to black-scurf and wilt. *Plant and Soil*, 39: 547-554.
19. Strzelczykowa A, Strzelczyk E. 1968. The influence of antagonistic actinomycetes on some soil bacteria. *Acta. Microbiol. Polon.* 7: 283–297.
20. United States Department of Agriculture Natural Resources Conservation Service (NRCS) Soil Quality Information Sheet. January 1998, Soil Biodiversity.
21. Watson C, Stockdale E, Philipps L. 2008. Laboratory mineral soil analysis and soil mineral management in organic farming. Institute of Organic Training & Advice: Research Review.
22. US Environmental Protection Agency. 2015. [Active Ingredients Eligible for Minimum Risk Pesticide Products](#). Washington, DC. 20460.