Effects of novel insecticides on spotted wing drosophila (*Drosophila suzukii*)

Matthew Gullickson, Mary Rogers, Department of Horticultural Science; Eric Burkness, William Hutchison, Department of Entomology

October 17, 2018
Outline

• Background
 – Spotted wing drosophila
 – Chemical management

• Research

• Conclusion
Spotted wing drosophila
(Drosophila suzukii; SWD)
<table>
<thead>
<tr>
<th>Cultivated</th>
<th>Wild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apricot</td>
<td>Aucuba</td>
</tr>
<tr>
<td>Blackberry</td>
<td>Akamono</td>
</tr>
<tr>
<td>Blueberry</td>
<td>Ash</td>
</tr>
<tr>
<td>Cherry</td>
<td>Barberry</td>
</tr>
<tr>
<td>Cranberry</td>
<td>Bayberry</td>
</tr>
<tr>
<td>Currant</td>
<td>Blackberry</td>
</tr>
<tr>
<td>Elderberry</td>
<td>Blackthorn</td>
</tr>
<tr>
<td>Fig</td>
<td>Blueberry</td>
</tr>
<tr>
<td>Gooseberry</td>
<td>Bryony</td>
</tr>
<tr>
<td></td>
<td>Buckthorn</td>
</tr>
<tr>
<td></td>
<td>Cherry</td>
</tr>
<tr>
<td></td>
<td>Cotoneaster</td>
</tr>
<tr>
<td></td>
<td>Ribes</td>
</tr>
<tr>
<td></td>
<td>Dewberry</td>
</tr>
<tr>
<td></td>
<td>Dogwood</td>
</tr>
<tr>
<td></td>
<td>Elderberry</td>
</tr>
<tr>
<td></td>
<td>Fig</td>
</tr>
<tr>
<td></td>
<td>Firethorn</td>
</tr>
<tr>
<td></td>
<td>Hawthorn</td>
</tr>
<tr>
<td></td>
<td>Herb-paris</td>
</tr>
<tr>
<td></td>
<td>Honeysuckle</td>
</tr>
<tr>
<td></td>
<td>Huckleberry</td>
</tr>
<tr>
<td></td>
<td>Minnesota Invasive Terrestrial Plants & Pests Center</td>
</tr>
</tbody>
</table>
Morphology

D. melanogaster
- Female
 - Brown bodies
 - Smooth ovipositor

D. suzukii
- Male
 - Spotted wing
- Female
 - Large, red eyes
 - Serrated ovipositor

Matusmura, 1931; Liburd & Iglesias, 2013; Atallah et al. 2014

Photo Credits: Shutterstock, Michigan State University Extension
Oviposition

Photo Credit: Joel Atallah, UC Davis
Life cycle

- **Egg** (350+ per adult!)
- **Larvae**
- **Pupae**
- **Adult**

Egg to adult: 10.8 days

Adults up to 59 days

Kanzawa, 1939
SWD Summary

- Recently established
- Modified ovipositor
- Wide host range
- Rapid generation time
Chemical Control

- Maximum residue limits
- Re-entry intervals
- Cost – especially for organic sprays
- Detrimental to beneficial insects
- Insecticide resistance
- Concerns about the environment and human health
Bioinsecticides

• Naturally occurring substances
Feeding Stimulants

• Entice the pest to ingest more of the chemical
Questions

- Which products work against SWD?
- Are there ways to increase efficacy?
Laboratory bioassays

• Objective
 – Determine the lethal and sub-lethal effects of novel insecticides

• Methods
 – Maintain a *D. suzukii* colony
 – Apply insecticides to raspberry fruit
 – Introduce flies to treated raspberry fruit
 – Record mortality, eggs, larvae, pupae, and adults
D. suzukii colony
<table>
<thead>
<tr>
<th>Trade name</th>
<th>Chemical name</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>LI700®</td>
<td>Soyal phospholipids + propionic acid</td>
<td>Adjuvant</td>
</tr>
<tr>
<td>Spear™</td>
<td>GS-omega/kappa-Hxtx-Hv1a</td>
<td>Conventional</td>
</tr>
<tr>
<td>Rimon®</td>
<td>Novaluron</td>
<td>Conventional</td>
</tr>
<tr>
<td>Mustang Maxx™ 0.8 EC</td>
<td>Zeta-cypermethrin</td>
<td>Conventional</td>
</tr>
<tr>
<td>Erythritol</td>
<td>Erythritol</td>
<td>Feeding stimulant</td>
</tr>
<tr>
<td>Azera®</td>
<td>Azadirachtin and pyrethrin</td>
<td>Organic</td>
</tr>
<tr>
<td>Grandevo®</td>
<td>Chromobacterium subtsugae</td>
<td>Organic</td>
</tr>
<tr>
<td>Pyganic®</td>
<td>Pyrethrin</td>
<td>Organic</td>
</tr>
<tr>
<td>Entrust® SC</td>
<td>Spinosad</td>
<td>Organic</td>
</tr>
<tr>
<td>Oroboost®</td>
<td>Alcohol ethoxylate</td>
<td>Surfactant</td>
</tr>
<tr>
<td>Silwet® L-77</td>
<td>Trisiloxane ethoxylate</td>
<td>Surfactant</td>
</tr>
<tr>
<td>Jet-Ag®</td>
<td>Hydrogen peroxide + peroxyacetic acid</td>
<td>Sterilant</td>
</tr>
</tbody>
</table>
Materials & Methods
Mortality

- Entrust® SC + Erythritol
- Mustang Maxx™
- Entrust® SC
- Spear™ + Erythritol
- Spear™ + Silwet 77®
- Spear™ + LI700®
- Grandevo® + Erythritol
Oviposition

- Mustang Maxx™
- Spear™ + Silwet 77®
Incubation: 1 week

Control without flies

Control with flies
Larvae

- Mustang Maxx™
- Entrust® SC + Erythritol
- Entrust® SC
- Spear™ + Silwet 77®
- Grandevo® + Erythritol
- Spear™ 10 ppt
Pupae

- Mustang Maxx™
- Entrust ® SC + Erythritol
- Entrust ® SC
- Grandevo® + Erythritol
- Azera® + Erythritol
Incubation: 2 weeks

Control without flies Control with flies
Adults

- Mustang Maxx™
- Entrust® SC + Erythritol
- Entrust® SC
- Pyganic®
- Azera® + Erythritol
Feeding Stimulants

- Improved efficacy
 - Grandevo®
 - Spear™
 - Jet Ag®
 - Entrust® SC

- Decreased efficacy
 - Rimon®
 - Azera®
Bioassay Summary

- Mustang Maxx™ and Entrust ® SC are still the most effective products
- Few products decreased oviposition
- Efficacy varied by life stage
- Feeding stimulants improved some products
Next Steps

• Testing these products in the field
• In combination with cultural controls
 – High tunnels
Acknowledgements

The Rogers Lab
Mary Rogers, Andy Petran, Claire Flavin, Jared Rubinstein, Nathan Hecht, Ignasi ‘Naxo’ Riera Vila, Heidi Anderson, Truong Nguyen, Sam Villella, Sadie Green, Kenna Ryan

Advisory Committee
Mary Rogers, Bill Hutchison, Emily Hoover

The Hutchison Lab
Bill Hutchison, Eric Burkness, Anh Tran, Dominique Ebbenga

Photo credit: Thanwalee (JiJY) Sooksa-nguan
Acknowledgements

• Funding for this project was provided by the Minnesota Invasive Terrestrial Plants and Pests Center through the Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR).