Persistence of Invasive Species Over Time in Prairie Reconstructions

Diane L. Larson
Research Wildlife Biologist
U.S. Geological Survey, Northern Prairie Wildlife Research Center
Co-authors

Sara Vacek, JB Bright, Pauline Drobney
- U.S. Fish and Wildlife Service

Jennifer Larson
- Polistes Foundation
Acknowledgments

• Region 3, U.S. Fish and Wildlife Service
 – Neal Smith NWR; Morris, Fergus Falls, Litchfield WMD; staff and volunteers

• U.S. Geological Survey
 – Science Support Program
 – Northern Prairie Wildlife Research Center
Objectives

• How pervasive are exotic species over time in reconstructed prairies?
 – Is this a function of planting methods or seed mix richness?
• Are some exotic species more persistent than others?
 – Is this a function of the composition of the planted species?
Primary questions

• What do we really need to worry about?
• What will take care of itself over time?
Treatments: Planted in 2005

Methods
• Dormant-season broadcast
• Growing-season broadcast
• Growing-season drill

Seed mixes
• Extra-high diversity (57 spp) Iowa only
• High diversity (34 spp)
• Medium diversity (20 spp)
• Low diversity (10 spp)

Planting method and seed mix treatments were fully crossed in a completely randomized design with 12 replicates on each of 6 fields in Minnesota and 3 fields in Iowa.

We planted 420 seeds/m².

Between 2010 and 2015 one field (Meadows) was partly converted to a wetland restoration so was removed from the study.
Guild proportions in seed mixes

- Warm-season (C₄) grasses: 50% (13% in extra-high)
 - *Big bluestem, little bluestem, side-oats grama…*
- Cool-season (C₃) grasses: 20% (5% in extra-high)
 - *Canada wildrye, green needlegrass…*
- Perennial forbs: 20% (68% in extra-high)
 - *Sunflower, beebalm, milkweed…*
- Legumes: 10% (13% in extra-high)
 - *Purple prairie clover, roundhead lespedeza…*
Exotic species cover as a function of planting method

Minnesota

Iowa (low, medium & high only)

DB = dormant season broadcast, GB = growing season broadcast, GD = growing season drilled
Exotic cover

- Dormant broadcast typically had least exotic cover in Minnesota plots, but all the same 2010-15
- Growing-season drill typically had least in Iowa plots, persisting through 2010-15
Trends in extent of noxious or problematic species

Minnesota

Iowa (low, medium, high only)

Larson et al. 2017 Restoration Ecology
Poa and Bromus

• Clear change in rate of spread for Poa in Minnesota in 2006-2007, Bromus in 2010
• Steady increases in Iowa
Cover of *Cirsium arvense* (MN)

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>method</td>
<td>2</td>
<td>32</td>
<td>6.03</td>
<td>0.006</td>
</tr>
<tr>
<td>diversity</td>
<td>2</td>
<td>32</td>
<td>0.87</td>
<td>0.4281</td>
</tr>
<tr>
<td>method*diversity</td>
<td>4</td>
<td>32</td>
<td>1.09</td>
<td>0.3793</td>
</tr>
<tr>
<td>year</td>
<td>4</td>
<td>144</td>
<td>30.67</td>
<td><.0001</td>
</tr>
<tr>
<td>method*year</td>
<td>8</td>
<td>144</td>
<td>4.89</td>
<td><.0001</td>
</tr>
<tr>
<td>diversity*year</td>
<td>8</td>
<td>144</td>
<td>0.27</td>
<td>0.9754</td>
</tr>
<tr>
<td>methoddiversityyear</td>
<td>16</td>
<td>144</td>
<td>0.47</td>
<td>0.9576</td>
</tr>
</tbody>
</table>

![Graph showing cover of *Cirsium arvense* (MN)](image-url)
Cover of *Poa pratensis* (MN)

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>method</td>
<td>2</td>
<td>32</td>
<td>0.21</td>
<td>0.815</td>
</tr>
<tr>
<td>diversity</td>
<td>2</td>
<td>32</td>
<td>0.08</td>
<td>0.9202</td>
</tr>
<tr>
<td>method*diversity</td>
<td>4</td>
<td>32</td>
<td>0.14</td>
<td>0.9643</td>
</tr>
<tr>
<td>year</td>
<td>4</td>
<td>144</td>
<td>85.25</td>
<td><.0001</td>
</tr>
<tr>
<td>method*year</td>
<td>8</td>
<td>144</td>
<td>3.05</td>
<td>0.0034</td>
</tr>
<tr>
<td>diversity*year</td>
<td>8</td>
<td>144</td>
<td>0.39</td>
<td>0.9263</td>
</tr>
<tr>
<td>methoddiversityyear</td>
<td>16</td>
<td>144</td>
<td>0.68</td>
<td>0.8104</td>
</tr>
</tbody>
</table>

![Graph showing cover of *Poa pratensis* over years with significant interaction effect highlighted]
Effect of the seed mix on exotic cover, Iowa sites

Drobney et al., submitted.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Including extra-high diversity</th>
<th>Excluding extra-high diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Num DF</td>
<td>Den DF</td>
</tr>
<tr>
<td>method</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>diversity</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>method*diversity</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>year</td>
<td>4</td>
<td>96</td>
</tr>
<tr>
<td>method*year</td>
<td>8</td>
<td>96</td>
</tr>
<tr>
<td>diversity*year</td>
<td>12</td>
<td>96</td>
</tr>
<tr>
<td>methoddiversityyear</td>
<td>24</td>
<td>96</td>
</tr>
</tbody>
</table>
Exotic species cover as a function of seed mix richness: Iowa

Drobney et al., submitted.
Trends in cover of noxious/problematic species by seed mix richness: Iowa

Drobney et al., submitted.
Take-home Messages

• Exotic forbs tended to peak early, then decline
 – More so in higher diversity plantings

• Cool-season exotic grasses show no evidence of decline
 – May be useful to look at what happened at inflection points on the graph (weather, management actions, etc.)
It’s not just *what* you know
It’s not just *what* you know

It’s *when* you know it!
Thank you!

Questions? dlarson@usgs.gov