The overwintering biology of *Aphelinus certus*, an adventive parasitoid of soybean aphid

Carl Stenoien, Lindsey Christianson, Kelton Welch, Keith Hopper, George Heimpel
sten0364@umn.edu, @CStenoien

Images: Kelton Welch
Acknowledgements

Funding for this project was provided by the Minnesota Invasive Terrestrial Plants and Pests Center through the Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR).

Logistical and experimental support was provided by Jonathan Dregni, Alex Dutchin, and Vanessa Robbins.
Soybean Aphid
\((Aphis\ glycines,\ Hemiptera:\ Aphididae) \)
Soybean Aphid Lifecycle
Timeline of soy, soybean aphid, & *Aphelinus certus*

- **2000**: Soybean aphid arrived in North America (WI)
- **2005**: A. certus first detected in North America (PA)
- **2010**: A. certus recognized as important control agent of SBA in Quebec and Ontario
- **2011**: A. certus first detected in MN
- **2015**: Field studies in MN found that A. certus alone can suppress aphids below economic threshold
- **2018**: Overwintering studies addressed today
Genus *Aphelinus*
(Hymenoptera: Aphelinidae)

- Develop to adulthood in ~3 weeks.
- ~1mm, weak fliers, but long-lived.
- Can parasitize 100-200 aphids in lifetime.
- Can also kill hosts by feeding on them.
What is the overwintering biology of *A. certus*?

- Supercooling point and cold tolerance of diapausing mummies
 - How cold is too cold?
- Overwintering survival of outplanted diapausing mummies
 - What are the effects of latitude and microhabitat?
- Spring emergence trapping of adult wasps
 - Do they overwinter in soy fields?
Supercooling point of diapaus ing mummies

• Decrease from 21°C to -40°C at ~1°C/min.
• Temperature recorded 1x/sec
• SCP = lowest temp prior to release of latent heat of fusion
• N=34
A. certus’ supercooling point is approximately -28°C

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-winter</td>
<td>14</td>
<td>-28.46</td>
<td>2.30</td>
<td>0.61</td>
</tr>
<tr>
<td>Recently mummified</td>
<td>20</td>
<td>-27.62</td>
<td>2.20</td>
<td>0.49</td>
</tr>
</tbody>
</table>

$t = -1.0637$, $df = 27.357$, p-value = 0.2967
Cold tolerance of diapausing mummies

-30, -28, -25, -22, -20, or 5°C

3 months winter: dark, 5-10°C

Summer, emergence 16:8 L:D and 20°C
Those dissected 1 week after cold-exposure suggest freeze-intolerance.
Wasp emergence after three months of simulated winter further suggests freeze-intolerance and reveals high background mortality.
Logistic regression: Survival was less affected by temperature than whether the insect froze

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std Err</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.570</td>
<td>0.33</td>
<td>0.08</td>
</tr>
<tr>
<td>Temperature</td>
<td>0.024</td>
<td>0.015</td>
<td>0.11</td>
</tr>
<tr>
<td>Supercooled</td>
<td>-2.538</td>
<td>0.77</td>
<td>0.001</td>
</tr>
</tbody>
</table>
\[LT_{50} = -22.45^\circ C \]
\[LT_{90} = -33.9^\circ C \]
What are the effects of climate and microhabitat on survival of outplanted diapausing mummies?
2016-17 Woodlot microhabitats near soy fields along NS transect
2016-2017
Survival was higher in the litter and at lower latitudes. The negative effect of foliage was especially strong at high latitudes.

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std Err</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.239</td>
<td>0.08</td>
<td>0.004</td>
</tr>
<tr>
<td>MicroHabitat: Foliage</td>
<td>-0.708</td>
<td>0.12</td>
<td><0.001</td>
</tr>
<tr>
<td>Latitude</td>
<td>-0.074</td>
<td>0.02</td>
<td>0.002</td>
</tr>
<tr>
<td>Foliage*Latitude</td>
<td>-0.411</td>
<td>0.05</td>
<td><0.001</td>
</tr>
</tbody>
</table>
2017-18
The subnivean zone is warmer and less variable than exposed foliage.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foliage</td>
<td>-6.8</td>
<td>7.1</td>
<td>-6.5</td>
<td>-24.2</td>
<td>12.1</td>
</tr>
<tr>
<td>Leaf Litter</td>
<td>-3.1</td>
<td>2.6</td>
<td>-2.8</td>
<td>-15.1</td>
<td>12.2</td>
</tr>
</tbody>
</table>
2017-18
Appreciable survival only occurred in leaf litter and was greater in woodlots.
2017-18
Post-diapause emergence took 7-8 days longer than expected based on Frewin et al. 2010
Spring Emergence Traps: 2017 & 2018

- 64 bucket traps placed in May and June each year, both tilled and no-till fields
- 21.4 M² of each type covered in each year
- Checked weekly for ~6 weeks.

Results:
Many insects trapped, but no *Aphelinus spp.* were recovered either year
Summary of Results

• Supercooling point of diapausing mummies
 • -28°C

• Lower lethal temperature of diapausing mummies
 • Probably freeze intolerant

• Overwintering habitat potential
 • Survival much better under snow than on exposed foliage

• Spring emergence trapping
 • Zero *Aphelinus* captured from soy fields thus far
Further questions

• What are the effects of sustained cold (rather than brief exposures) on survival?
• What are the cues and timing of diapause induction and emergence?
• Does A. certus overwinter in soybean aphid hosts on buckthorn plants?
• Does A. certus overwinter in other aphids?