Can the invasive tree Ailanthus altissima be tamed with a native Verticillium fungus?

Joanne Rebbeck, Joan Jolliff & Tim Fox

USFS Northern Research Station
Delaware, Ohio
jrebbeck@fs.fed.us
Ailanthus altissima

Ailanthus or Stink Tree

Tree of heaven

The Ohio Woodland Journal Fall 2013
“It is the only introduced tree that is competing vigorously with our native tree growth unless a use is found for its wood, this tree will develop into a worthless forest weed and become a nuisance of the first magnitude.”

Joseph Illick and E.F. Brouse. 1926. PA Dept. of Forests and Waters Bulletin 38
Ailanthus wilt found in PA forests - 2002

Verticillium nonalfalfaе

Don Davis & Mark Schall
Matthew Kasson
Eric O’Neil

Penn State University
Forest Pathology

2009 - VA
2012 - OH
Rapid Foliar Wilting
Kills vascular tissue

Dying Ailanthus

Healthy Ailanthus
Two Verticillium wilts that attack *Ailanthus*

1. *Verticillium dahliae*
 - slow-killing >2 years
 - common & widely distributed
 - generalist

2. *Verticillium nonalfalfae*
 - fast-killing <1 year
 - more pathogenic
 - infrequent
Windshield survey of *Verticillium nonalfafae* in Southeastern USA

• Annual monitoring of stands
• Rate of spread 300-400 ft/year
• No non-target species effects
Fungal Isolate Comparisons

• Molecular sequencing identification – All isolates are identical

• Pathogenicity on Ailanthus seedlings similar to PA and VA isolates

• Wilting began at 4 weeks
• Dead within 9 weeks

Rebbeck et al. 2013. Plant Disease 9 (7):999
http://dx.doi.org/10.1094/PDIS-01-13-0062-PDN
Verticillium nonalfalfae
"Model" Biocontrol Agent

- Native soil-borne fungus
- Highly selective for Ailanthus
- Natural transmission via root grafting, wounding
- Can persist in soil for years
2006-2009
100 canopy trees were inoculated

2011
>14,000 dead/dying trees and 10,000-15,000 sprouts killed

Kasson et al 2014
Added bonus – Ambrosia beetle may help move the fungus

Euwallacea validus

<1/8” long
Regulatory Approval in Ohio

- Searched for naturally occurring infected stands (2009-2012)
- Ohio Dept. of Agriculture approval for field studies in 2013
- No regulatory issues with APHIS or ODA to use Ohio isolate (in-state inoculum)
<table>
<thead>
<tr>
<th>Tree Species</th>
<th>Tree Species</th>
<th>Tree Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boxelder</td>
<td>Autumn olive</td>
<td>White ash</td>
</tr>
<tr>
<td>Japanese maple</td>
<td>Mountain laurel</td>
<td>American sycamore</td>
</tr>
<tr>
<td>Striped maple (3%)</td>
<td>Great rhododendron</td>
<td>Hawthorn</td>
</tr>
<tr>
<td>Norway maple</td>
<td>Pink azalea</td>
<td>Apple ‘Rome’</td>
</tr>
<tr>
<td>Red maple</td>
<td>Lowbush blueberry</td>
<td>Sweet cherry</td>
</tr>
<tr>
<td>Sugar maple</td>
<td>Silktree</td>
<td>Black cherry</td>
</tr>
<tr>
<td>Red elderberry</td>
<td>Eastern redbud</td>
<td>Multiflora rose</td>
</tr>
<tr>
<td>Staghorn sumac (16%)</td>
<td>Honey locust</td>
<td>Amur corktree</td>
</tr>
<tr>
<td>Poison-ivy</td>
<td>Black locust</td>
<td>Korean evodia</td>
</tr>
<tr>
<td>Pawpaw</td>
<td>American chestnut</td>
<td>White poplar</td>
</tr>
<tr>
<td>Angelica tree</td>
<td>American beech</td>
<td>Bigtooth aspen</td>
</tr>
<tr>
<td>European black alder</td>
<td>Northern red oak</td>
<td>Royal paulownia</td>
</tr>
<tr>
<td>Black birch</td>
<td>Chestnut oak</td>
<td>Ailanthus</td>
</tr>
<tr>
<td>American hornbeam</td>
<td>American witchhazel</td>
<td>American basswood</td>
</tr>
<tr>
<td>Hophornbeam</td>
<td>Mock-orange</td>
<td>Hackberry</td>
</tr>
<tr>
<td>Japanese barberry</td>
<td>Hickory</td>
<td>American elm</td>
</tr>
<tr>
<td>Northern catalpa</td>
<td>Black walnut</td>
<td>Siberian elm</td>
</tr>
<tr>
<td>Doublefile viburnum</td>
<td>Northern spicebush</td>
<td>Eastern red cedar</td>
</tr>
<tr>
<td>Blackhaw</td>
<td>Sassafras</td>
<td>Arborvitae</td>
</tr>
<tr>
<td>Oriental bittersweet</td>
<td>Corkwood</td>
<td>Virginia pine</td>
</tr>
<tr>
<td>Burningbush</td>
<td>Yellow-poplar</td>
<td>Devil’s walkingstick (17%)</td>
</tr>
<tr>
<td>Winter creeper</td>
<td>Cucumertree</td>
<td></td>
</tr>
<tr>
<td>Flowering dogwood</td>
<td>Black tupelo</td>
<td></td>
</tr>
</tbody>
</table>

Ohio Greenhouse Studies

Greenhouse inoculations at Delaware Lab 2013-2015

• *Ailanthus*
• Oaks: black, chestnut, pin, red, scarlet, & white
• Hickories: bitternut, butternut, mockernut, pignut & shagbark
• Elm
• Ash
• Beech
• Tomato, alfalfa & soybeans

To date – no off-target effects
10 weeks post-inoculation
Ohio Field Research

• Demonstration study installed at Vinton Furnace and Tar Hollow State Forests in June 2014
Hack-n-Squirt Stem “Injection” of Ailanthus

1. Fungus is cultured on agar in lab

2. High concentration of spores in aqueous solution prepared

3. Ailanthus trees cut with hatchet & injected with fungus
2 weeks after inoculation
8 weeks after inoculation
15 weeks after inoculation
US FS Forest Health Program Biocontrol Grant

- Inoculated and monitoring Ailanthus in 5 SE Ohio forests
- Monitoring for off-target effects
- Studying “aftermath” regeneration within inoculated stands

Partners: Ohio Division of Forestry, Wayne National Forest, The Wilds, & Penn State
5 study sites:
• 4 plots inoculated + 1 control plot per site
• 10 Ailanthus trees per plot (>2.4” dbh)

Plots are 20 X 50 m (66 x 164 ft)
Summary of percent cover vegetation at each of the five study areas within 2 x 5 meter subplots prior to inoculation of Ailanthus trees with Verticillium wilt

<table>
<thead>
<tr>
<th>Vegetation type</th>
<th>Mean</th>
<th>±SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Native plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grasses</td>
<td>11.1</td>
<td>1.4</td>
</tr>
<tr>
<td>Native vines/lianas</td>
<td>12.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Herbs & forbs</td>
<td>18.3</td>
<td>1.6</td>
</tr>
<tr>
<td>Shrubs - Spicebush</td>
<td>76.6</td>
<td>8.5</td>
</tr>
<tr>
<td>Tree seedlings</td>
<td>8.6</td>
<td>0.6</td>
</tr>
<tr>
<td>B. Non-native plants excluding Ailanthus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese stiltgrass</td>
<td>15.4</td>
<td>8.3</td>
</tr>
<tr>
<td>Japanese honeysuckle</td>
<td>50.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Garlic mustard</td>
<td>4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Multiflora rose</td>
<td>72.6</td>
<td>16.8</td>
</tr>
<tr>
<td>Bush honeysuckle</td>
<td>24.0</td>
<td>13.0</td>
</tr>
</tbody>
</table>

Other non-natives observed include privet, periwinkle, wineberry, and autumn olive.
Biweekly Disease Severity Index Ratings

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>healthy foliage</td>
</tr>
<tr>
<td>1</td>
<td>chlorosis and/or necrotic margins on leaves</td>
</tr>
<tr>
<td>2</td>
<td>slight wilt (<15% wilting foliage) with no or slight defoliation (<15%)</td>
</tr>
<tr>
<td>3</td>
<td>moderate wilt (15 to <50% wilting foliage with no or slight defoliation (<15%)</td>
</tr>
<tr>
<td>4</td>
<td>severe wilt (50 to 100% wilting foliage with no or slight defoliation (<15%)</td>
</tr>
<tr>
<td>5</td>
<td>moderate defoliation (15 to <50%)</td>
</tr>
<tr>
<td>6</td>
<td>severe defoliation (50 to 90%)</td>
</tr>
<tr>
<td>7</td>
<td>very severe defoliation (90 to 100%) with epicormic sprouting</td>
</tr>
<tr>
<td>8</td>
<td>dead</td>
</tr>
<tr>
<td>Forest Site</td>
<td>Mean dbh (in)</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Blue Rock SF</td>
<td>5.5</td>
</tr>
<tr>
<td>Marietta WNF</td>
<td>6.3</td>
</tr>
<tr>
<td>Perry SF</td>
<td>5.5</td>
</tr>
<tr>
<td>Tar Hollow SF</td>
<td>5.9</td>
</tr>
<tr>
<td>The Wilds</td>
<td>5.9</td>
</tr>
<tr>
<td>Mean</td>
<td>5.8</td>
</tr>
<tr>
<td>Controls (sterile water)</td>
<td>5.9</td>
</tr>
</tbody>
</table>

*DAI = Days after inoculated with Verticillium fungal spores
What are the off-target effects?

Natural infections of *V. nonalfalfa* fungus in PA

Striped maple (3%) Staghorn sumac (16%)

http://faculty.etsu.edu
Devil’s Walkingstick, *Aralia spinosa*

- PA - 17% were naturally infected – 2 sites
- Isolated fungus from leaves
- 2015 – began trial inoculations of aralia & sumac in OH
Devil’s walkingstick
• 5 weeks post-treatment
• all defoliated and spreading

Glossy sumac
• 3 weeks: no symptoms

Possible native hosts for fungus?

Muskingum Watershed Conservancy District, Leesville, OH
Family Araliaceae - Mostly tropical shrubs and trees
USDA PLANTS Database - 18 Genera and 47 species

- Devils walkingstick
- English ivy
- Schlefflera (Umbrella plant)
- Ginseng - 4 species

American ginseng, *Panax quinquefolius* L.

Credit: Gary Kauffman, USFS
• Ginseng is difficult to grow artificially

• Monitoring ginseng in current inoculation research plots

• 2016 - Inoculate Ailanthus trees within ginseng areas
The work continues...

- Assess off-target effects
- Alternate ways to culture fungus (scaling up)
- Stability of fungus (has short shelf life)
- Restoration plantings in inoculated stands
- Infected wood chips to “inoculate” Ailanthus
Collect 10-20 large wood chips
Store in ziplock freezer bag
Keep samples cool – store in cooler or fridge

*Wood chips: both healthy and discolored
THANKS

• Matt Malone, Jeremy Scherf, & Brad Wireman
• OSAF & Ohio forestry community
• ODNR Division of Forestry, Wayne NF, & The Wilds
• Penn State & WVU - Don Davis, Matt Kasson, & Eric O’Neal
• US Forest Service State & Private Forest Health Biological Control Program and NRS for financial support
SPECIAL THANKS FOR FIELD AND LAB ASSISTANCE

Joan Jolliff, Tim Fox, Bill Borovichka, Dave Runkle, Jill Barber, Danielle Flowers, Andrew Hendricks, Joel Metelko, Laura Stevens, and Hagmel Vega-Fontanez
QUESTIONS?

Joanne Rebbeck
jrebbeck@fs.fed.us
740-368-0054
Alternative inoculation formulations

- Infected soil
- Infected Ailanthus wood & leaves

O’Neal & Davis. 2015. Biocontrol Science & Technology

Optimal inoculation time in PA – April to May